$Sr_5MgLa_{2-x-y}(BO_3)_6$: x Bi³⁺, yM(M = Eu³⁺, Y³⁺) 荧光粉的合成及发光性能

王小军,梁利芳,陈凯,杨国辉,蒙丽丽*

南宁师范大学化学与材料学院,广西南宁 530001

摘要 采用高温固相法合成 Sr₅MgLa_{2-x-y}(BO₃)₆:xBi³⁺, yM (M=Eu³⁺, Y³⁺)(0≤x, y≤1)系列荧光粉。用 扫描电镜和 X 射线粉末衍射仪测量样品的形貌和结构,用紫外可见分光光度计和荧光光谱仪测量样品的发光性 能。结果表明:在该掺杂浓度范围内,样品为纯相;在波长为 339 nm 光的激发下,Sr₅MgLa_{2-x}(BO₃)₆:xBi³⁺具有 峰值位于431 nm的单峰蓝光发射,为掺杂 Bi³⁺的³ P₁→¹ S₀ 跃迁,猝灭浓度为 x = 0.24;随着 Y³⁺浓度增大, Sr₅MgLa_{1.76-y}(BO₃)₆:0.24Bi³⁺, yY³⁺ 荧光粉的发射峰强度增大,激发峰发生红移;在紫外光激发下, Sr₅MgLa_{2-x-y}(BO₃)₆:xBi³⁺, yEu³⁺荧光粉存在 Bi³⁺的蓝光发射和Eu³⁺的红光发射,存在 Bi³⁺到 Eu³⁺的能量传 递,通过荧光衰减曲线可计算出能量传递效率。改变 Sr₅MgLa_{2-x-y}(BO₃)₆:xBi³⁺, yEu³⁺荧光粉中 Bi³⁺和 Eu³⁺ 的掺杂量或改变激发波长,均可得到可调节的蓝光到红光发射。

关键词 材料; 硼酸盐 Sr₅ MgLa₂ (BO₃)₆; 荧光粉; 敏化发光 中图分类号 O482.31; O614.33 **文献标识码** A

doi: 10.3788/AOS201939.1116001

Synthesis and Luminescence Properties of $Sr_5MgLa_{2-x-y}(BO_3)_6$: xBi^{3+} , yM ($M = Eu^{3+}$, Y^{3+}) Phosphors

Wang Xiaojun, Liang Lifang, Chen Kai, Yang Guohui, Meng Lili*

College of Chemistry and Materials, Nanning Normal University, Nanning, Guangxi 530001, China

Abstract Herein, $Sr_5 MgLa_{2-x-y} (BO_3)_6 : xBi^{3+}$, $yM (M = Eu^{3+}, Y^{3+}) (0 \le x, y \le 1)$ phosphors are synthesized using the high-temperature solid phase method. Further, scanning electron microscopy and X-ray powder diffractometer are utilized to characterize the morphology and structure of the samples, and an ultravioletvisible spectrophotometer and a fluorescence spectroscope are utilized for characterizing the luminescent properties of the samples. The results denote that the samples are pure phase in terms of the doping concentration. $Sr_5 MgLa_{2-x} (BO_3)_6 : xBi^{3+}$ exhibits a single peak blue emission with a crest value of 431 nm under an excitation of 339 nm. This emission can be attributed to the transition of Bi^{3+} from ${}^{3}P_1$ to ${}^{1}S_0$, and the quenching concentration is x=0.24. The $Sr_5 MgLa_{1.76-y} (BO_3)_6 : 0.24Bi^{3+}$, yY^{3+} emission peak intensity intensifies with an increase in the Y^{3+} concentration, and the excitation peaks denote a red shift. With the excitation of an ultraviolet light, the $Sr_5 MgLa_{2-x-y} (BO_3)_6 : xBi^{3+}$, yEu^{3+} phosphor causes blue emission, which originates from Bi^{3+} , and red emission, which originates from Eu^{3+} . Further, there is an energy transfer process from Bi^{3+} to Eu^{3+} , and the energy transfer efficiency can be calculated based on the fluorescence decay curve. Finally, an adjustable blue to red emission can be obtained by changing the doping amount of Bi^{3+} and Eu^{3+} in the $Sr_5 MgLa_{2-x-y} (BO_3)_6 : xBi^{3+}$, yEu^{3+}

Key words materials; borate $Sr_5MgLa_2(BO_3)_6$; phosphor; sensitized luminescence OCIS codes 160.4670; 140.5680; 330.1690

1 引 言

目前,荧光转换的白光发光二极管(LED)已成

为市面上常见的固态照明光源,而红光作为获得暖 白光 LED 的重要组成部分,有利于提高 LED 光源 的显色指数,降低其相关色温^[1-3]。

收稿日期: 2019-05-27; 修回日期: 2019-07-08; 录用日期: 2019-07-24 基金项目: 国家自然科学基金(21161004,51762008)

* **E-mail**: mll_0001@163.com

稀土离子 Eu³⁺的 4f⁶壳层结构上拥有最低的激 发态能级⁵D₀,可以呈现出源自⁵D₀→⁷F₂能级跃迁的 位于 610~618 nm 附近尖锐的红光发射^[4-7],常被 用作荧光粉的红光发射的激活剂^[8-10]。Eu³⁺在 395 nm附近的激发峰来源于宇称禁止的⁷F₀→⁵L₆ 跃迁,其为尖峰,并且吸收能量的效率不高^[11-14]。为 了增强和扩宽 Eu³⁺的激发光谱,一种比较常见的方 法是加入 Bi³⁺作为敏化剂。Bi³⁺的 d→d 跃迁会产 生从蓝光到红光的较广的发射光谱,在 Bi³⁺、Eu³⁺ 共掺的荧光粉中,Bi³⁺能有效吸收紫外光并将能量 传递给 Eu³⁺,从而提高荧光粉中 Eu³⁺的相对发光 强度,减少其掺杂量^[15-17]。

目前,关于硼酸盐 Sr₅ MgLa₂ (BO₃)₆ 基质荧光 粉的报道较少,Schaffers 等^[18] 对 Sr₅ MgLa₂ (BO₃)₆ 的结构进行了研究,Sankar 等^[19-20] 报道了 Eu³⁺、 Sm³⁺和 Gd³⁺等多离子共掺杂的 Sr₅ MgLa₂ (BO₃)₆ 材料的发光性能;Müller 等^[21]等关于 Ce³⁺和 Mn²⁺ 共掺的 Sr₅ MgLa₂ (BO₃)₆荧光粉的发光性能和能量 传递的报道,证实了能量从 Ce³⁺到 Mn²⁺的传递。 而对于 Sr₅ MgLa_{2-x-y} (BO₃)₆: xBi³⁺, yM (M =Eu³⁺, Y³⁺) (0 $\leq x, y \leq 1$)(x 和 y 为物质的量分 数)荧光粉的研究尚未见公开的报道。本文采用高 温 固 相 法 合 成 了 具 有 发 光 可 调 性 的 Sr₅ MgLa_{2-x-y} (BO₃)₆: xBi³⁺, yM 荧光粉,研究了 单掺或共掺时该荧光粉的物相结构、荧光性能和能 量传递机理。

2 实验部分

利用高温固相法合成 Sr₅ MgLa_{2-x-y}(BO₃)₆: xBi³⁺,yM(0 \leq x,y \leq 1)系列荧光粉。以分析纯 SrCO₃、H₃BO₃、Y₂O₃、(MgCO₃)₄Mg(OH)₂·5H₂O、 Eu₂O₃、Bi(NO₃)₃·5H₂O和La₂O₃为原料,根据目 标产物化学式的计量比称取原料,将原料放入玛瑙 研钵中研磨 20~30 min,使之混合均匀,然后装入 刚玉坩埚中;将装有原料的刚玉坩埚放入箱式马弗 炉中,加热至1100 °C,烧结6h,随炉冷却后取出产 物;再次研磨后可得目标产物。考虑到硼酸的易挥 发性,该实验过程中硼酸过量 10%(物质的量分 数)。

采用德国布鲁克公司生产的 Bruker D8 X 射线 粉末衍射 (XRD) 仪测试样品的物相,设置条件如 下:X 射线 (Cu 靶, K_a射线,波长 $\lambda = 1.5418 \times 10^{-10}$ m),管电压为 40 kV,管电流为 25 mA,扫描 速度为 8 (°)/min,扫描范围 2 θ 为 10°~80°(θ 为衍 射角),步宽为 0.02°。采用日本日立公司生产的 F-4600型荧光光谱仪测试样品的荧光性能所,测试 条件如下:150 W 氙灯激发光源,200~730 nm 扫描 范围,波长为 400 nm 的滤波片。采用 PE LAMBDA 950 紫外可见分光光度计测试样品的漫 反射光谱(以 BaSO4 白色粉末作为对照),设置扫描 波长为 200~600 nm。采用英国 EI 公司生产的 FLS920 型光谱仪测试样品的荧光寿命。采用德国 蔡司公司生产的 ZEISS-EVO18 扫描电子显微镜 (SEM)分析样品的形貌,加速电压为 20.0 kV。所 有测试均在室温条件下进行。

3 结果与讨论

图1是本研究所合成样品的 XRD 图谱,从 图 1(a)、(b)、(d)可以看出,改变掺杂离子浓度, $Sr_5MgLa_{2-x}(BO_3)_6$: xBi^{3+} , $Sr_5MgLa_{1,8-x}(BO_3)_6$: $x \operatorname{Bi}^{3+}$, 0.2Eu³⁺ 和 Sr₅MgLa_{1.76-y} (BO₃)₆: 0.24Bi³⁺, νY^{3+} 样品的 XRD 衍射峰没有变化,与标准卡片 ICDD:04-009-3050 基本吻合,说明在一定的掺杂浓 度范围内所合成的样品均为纯相。所合成样品 Sr₅MgLa₂(BO₃)₆的晶体结构如图 2 所示,La 和 Mg 原子通过(BO₃)³⁻三角形基团连接成一维单链,而 一维单链又通过 Sr 原子连接成三维网状结构[16], 其结构为高度对称的三方晶体结构,属于晶体空间 群 R3。晶体中的阳离子具有 9 配位和 8 配位两种 配位环境,其中 La³⁺和部分 Sr²⁺为 9 配位,两种离 子的物质的量分数之比为 0.67:0.33, 对应的离子半 径分别为1.216×10⁻¹⁰ m 和 1.13×10⁻¹⁰ m; Mg²⁺ 和剩余的 Sr²⁺为 8 配位环境, 对应的离子半径分别 为 0.72×10⁻¹⁰ m 和 1.18×10⁻¹⁰ m。带电荷数相等 的 $Bi^{3+}(C_N=8, r=1.17\times 10^{-10} \text{ m})$ 、 $Eu^{3+}(C_N=8, r=1.17\times 10^{-10} \text{ m})$ $r = 1.07 \times 10^{-10}$ m) 和 Y³⁺ ($C_{\rm N} = 9, r = 1.08 \times$ 10^{-10} m)与 La³⁺ (C_N=9, r=1.216×10⁻¹⁰ m)的离 子半径接近(C_N为配位数,r 为离子半径),从离子 半径接近和电荷平衡角度考虑,Bi3+、Eu3+和Y3+均 应取代 La³⁺。有别于 Bi³⁺、Eu³⁺的激活离子取代, Y³⁺不能吸收能量产生发光,Y³⁺的取代属于基质取 代,掺杂大量的 Y³⁺并不会改变 XRD 图谱中衍射峰 的结构,但会导致衍射峰位置发生移动,如图 1(c) 所示。随着 Y³⁺ 掺杂量增加, 2θ 从 24.08°增大到 24.23°,这是因为 Y³⁺ (r=1.08×10⁻¹⁰ m)的半径小 于 La³⁺ (r=1.216×10⁻¹⁰ m),增加 Y³⁺ 的掺杂量使 晶面间距 d 减小,衍射角 θ 增大。 Bi^{3+} 和 Eu^{3+} 的掺 杂也能造成衍射峰发生某种程度的位移。

图 1 样品的 XRD 图谱。(a) Sr₅ MgLa_{2-x}(BO₃)₆:xBi³⁺;(b) Sr₅ MgLa_{1.76-y}(BO₃)₆:0.24Bi³⁺, yY³⁺,整体; (c) Sr₅ MgLa_{1.76-y}(BO₃)₆:0.24Bi³⁺, yY³⁺,局部;(d) Sr₅ MgLa_{1.8-x}(BO₃)₆:xBi³⁺, 0.2Eu³⁺

Fig. 1 XRD patterns of samples. (a) $Sr_5MgLa_{2-x}(BO_3)_6$: xBi^{3+} ; (b) whole of $Sr_5MgLa_{1.76-y}(BO_3)_6$: $0.24Bi^{3+}$, yY^{3+} ; (c) partial of $Sr_5MgLa_{1.76-y}(BO_3)_6$: $0.24Bi^{3+}$, yY^{3+} ; (d) $Sr_5MgLa_{1.8-x}(BO_3)_6$: xBi^{3+} , $0.2Eu^{3+}$

图 3 样品的 SEM 照片。(a) Sr₅MgLa₂(BO₃)₆;(b) Sr₅MgLa_{0.9}(BO₃)₆:0.24Bi³⁺, 0.86 Y³⁺ Fig. 3 SEM images of samples. (a) Sr₅MgLa₂(BO₃)₆; (b) Sr₅MgLa_{0.9}(BO₃)₆:0.24Bi³⁺, 0.86 Y³⁺

图 3 是 Sr₅ MgLa₂ (BO₃)₆和 Sr₅ MgLa_{0.9} (BO₃)₆: 0.24Bi³⁺,0.86Y³⁺的 SEM 图像,可以看出,所合成 样品的颗粒均为多面体不规则结构,颗粒大小不均 匀,尺寸在 1~50 μm 之间,掺杂离子对样品颗粒的 尺寸及形貌没有太大影响。

图 4 (a)为 Sr₅ MgLa_{1.76-y} (BO₃)₆: 0.24Bi³⁺, y Y³⁺ 在激发波长 λ_{em} 为 431 nm 光的检测下得到的激 发光谱,可以看出样品的激发峰随着 Y³⁺浓度增大而 出现红移现象。在所制备的 Sr₅ MgLa_{1.76} (BO₃)₆: 0.24Bi³⁺ 样品中, Bi³⁺ 和 La³⁺ 的半径接近, Bi³⁺ 部分取代La³⁺ 对晶胞大小的影响不大。但是在

图 4 Sr₅ MgLa_{1.76-y}(BO₃)₅:0.24Bi³⁺, yY³⁺的荧光光谱。(a)激发光谱;(b)发射光谱

Fig. 4 Fluorescence spectra of $Sr_5 MgLa_{1.76-y} (BO_3)_5 : 0.24 Bi^{3+}$, yY^{3+} . (a) Excitation spectra; (b) emission spectra

 $Sr_5 MgLa_{1,76-y}(BO_3)_6:0.24Bi^{3+}, yY^{3+}$ 样品中,半径 较小的 Y³⁺取代 La³⁺(r=1.216×10⁻¹⁰ m,C_N=9) 后引起晶格收缩,Y³⁺取代格位的晶体场劈裂能减少,较少的能量 即可完成电荷迁移,因而激发峰红移。图 4(b)所示 为 Sr₅ MgLa_{1.76-y}(BO₃)₆:0.24Bi³⁺, yY³⁺在 339 nm 光的激发下得到的发射光谱,可以看出,掺杂一定浓 度的 Y³⁺之后,Bi³⁺的发光强度有所增加,这是因为 Y³⁺的掺杂使得 Bi³⁺的晶胞大小发生了调整。

图 5(a)是 Sr₅MgLa_{1.76}(BO₃)₆:0.24Bi³⁺在检测 波长为 431 nm 时的激发光谱,只有一个激发宽峰 (303~400 nm),峰值位于 340 nm 处,该激发峰归 属于 Bi³⁺的¹S₀→³P₁的跃迁。图 5(b)的发射光谱 显示,Sr₅MgLa_{2-x}(BO₃)₆:xBi³⁺在 340 nm 光激发 下均出现了 Bi³⁺在蓝光区域的特征发射宽峰(409~ 494 nm),最高峰值为 431 nm,归属于轨道-自旋耦 合允许的³P₁→¹S₀跃迁。随着 Bi³⁺掺杂量逐渐增 加,Sr₅MgLa_{2-x}(BO₃)₆:xBi³⁺的发射峰强度先增强 后减弱,当 Bi³⁺的掺杂量x = 0.24时,样品的发光强 度最大,继续增大 Bi³⁺的掺杂浓度,荧光浓度降低, Bi³⁺的最佳掺杂量为 x = 0.24。根据公式 $R_c = 2[3V/(4\pi X_c N)]^{1/3}$ 计算掺杂 Bi³⁺ 猝灭浓度的临界 距离^[22-23],其中晶胞中阳离子数目 N=3,猝灭浓度 $X_c=0.24$,晶胞体积 V=1.21602 nm³,可计算得到 Bi³⁺的猝灭距离 $R_c=14.77 \times 10^{-10}$ m。当猝灭距离 大于 5×10⁻¹⁰ m时,能量传递的作用属于多级相互 作用。

图 6 (a) 是 Sr₅ MgLa_{1.68} (BO₃)₆: 0.12Bi³⁺, 0.2Eu³⁺在检测波长为 614 nm 时的激发光谱叠加在 O²⁻→Eu³⁺电荷转移带(CTB)上,从而使 CTB 和吸 收峰之间的相对强弱性发生改变,共掺后荧光粉的 发光效率得到提高,紫外线吸收得到增强。图 6(b) 是 Sr₅ MgLa_{1.88-y}(BO₃)₆: 0.12Bi³⁺, yEu³⁺(y=0~ 0.24)在 340 nm 激发下,荧光发射强度随着 Eu³⁺ 掺 杂浓度变化的情况。较强的发射峰主要出现在 434,598,617,705 nm 处,分别归属于 Bi³⁺的³P₁→ ¹S₀ 跃迁和Eu³⁺的⁵D₀→⁷F₁、⁵D₀→⁷F₂和⁵D₀→⁷F₄

图 5 样品的荧光光谱。(a) Sr₅ MgLa_{1.76}(BO₃)₆:0.24Bi³⁺的激发光谱;(b) Sr₅ MgLa_{2-x}(BO₃)₆:xBi³⁺的发射光谱 Fig. 5 Fluorescence spectra of samples. (a) Excitation spectrum of Sr₅ MgLa_{1.76}(BO₃)₆:0.24Bi³⁺; (b) emission spectra of Sr₅ MgLa_{2-x}(BO₃)₆:xBi³⁺

图 6 Sr₅ MgLa_y(BO₃)₆:Bi³⁺, yEu³⁺的荧光性能及能量传递。(a) Sr₅ MgLa_{1.68}(BO₃)₆:0.12Bi³⁺, 0.2Eu³⁺的激发光谱; (b) Sr₅ MgLa_{1.88-y}(BO₃)₆:0.12Bi³⁺, yEu³⁺的发射光谱;(c) Bi³⁺→Eu³⁺的能量传递图

Fig. 6 Fluorescence properties and energy transfer of $Sr_5 MgLa_y$ (BO₃)₆ : Bi³⁺, yEu^{3+} . (a) Excitation spectrum of $Sr_5 MgLa_{1.68}$ (BO₃)₆ : 0.12Bi³⁺, 0.2Eu³⁺; (b) emission spectra of $Sr_5 MgLa_{1.88-y}$ (BO₃)₆ : 0.12Bi³⁺, yEu^{3+} ; (c) energy transfer from Bi³⁺ to Eu³⁺

跃迁,其中 Bi³⁺ 蓝光发射明显强于 Eu³⁺。从图6(b) 可以看出,掺杂浓度的改变对发射图谱的形状无影 响,只是改变了其强度。Bi³⁺在431 nm 附近的发射 峰强度随着 Eu³⁺掺杂量的增加而逐渐减弱,与此同 时,Eu³⁺在614 nm 附近的发射峰强度逐渐增加。 这是因为共掺杂 Eu³⁺之后,样品中发生了 Bi³⁺ → Eu³⁺的能量传递,能量传递机制如图 6(c)所示, Bi³⁺吸收的激发光能量通过能量交换的方式从³ P₁ 能级传递到了 Eu³⁺的⁵ D₀能级。由于 Bi³⁺的掺杂量 固定并且传递了能量给 Eu³⁺,因此 Bi³⁺的发光强度 减弱;而 Eu³⁺的掺杂量增加,且接收到来自 Bi³⁺传 递的激发能,故其发光强度增强。

图 7 所示为在波长为 339 nm 光的激发下所制 备样品 Sr₅ MgLa_{1.8-x} (BO₃)₆: xBi³⁺, 0.2Eu³⁺ 的发 射光谱和红、蓝光强度随 Bi³⁺ 物质的量分数变化的 曲线,其中 Bi³⁺ 的特征发射强度很大,而 Eu³⁺ 的特 征发射强度比较弱。随着 Bi³⁺ 掺杂浓度增大,Eu³⁺ 在 593,614,705 nm 处的特征发射强度呈增加的趋 势,当 Bi³⁺ 的掺杂量达到 x = 0.08 后,Eu³⁺ 的发射 强度趋于平稳,这表明掺杂一定浓度的 Bi³⁺能够有 效敏化 Eu³⁺的发光。当 Bi³⁺的掺杂量 x小于 0.08 时,Bi³⁺和 Eu³⁺的荧光强度均随 Bi³⁺浓度的增大而 增强,这可能是因为随着 Bi³⁺掺杂浓度的增加,Bi³⁺ 吸收的紫外光部分通过 O²⁻→Eu³⁺电荷转移吸收 将能量传递给 Eu³⁺,使 Eu³⁺的发光强度增大;当 Bi³⁺的掺杂量 x 超过 0.08 时,Eu³⁺的发光强度出现 平稳,而此时 Bi³⁺的发光强度呈下降的趋势。这可 能是因为在 Bi³⁺的高浓度掺杂下,Bi³⁺之间能量传 递发生猝灭,导致 Bi³⁺的发射强度逐渐降低。

图 8 为 Sr₅ MgLa_{1.68} (BO₃)₆: 0.12Bi³⁺, 0.2Eu³⁺ 在不同的激发波长下得到的发射光谱及其对应的 CIE 色坐标图,图中 T_c 表示色温, X、Y 轴分别表示 与红色、绿色有关的相对量值。从图 8 可以看出,随 着激发波长从 339 nm 变化到 396 nm,Bi³⁺ 的发射 强度逐渐降低,而 Eu³⁺ 的发射强度逐渐增大。因 此,通过调节激发波长,Sr₅ MgLa_{1.68} (BO₃)₆: 0.12Bi³⁺, 0.2Eu³⁺ 的色度坐标可以从蓝光的(0.2107, 0.0741)处移动到红光的(0.5725, 0.324)处。

图 9(a)为样品 Sr₅ MgLa_{1.88-y}(BO₃)₆: 0.12Bi³⁺, yEu³⁺在 339 nm 光激发下 431 nm 处的

Fig. 7 Fluorescence properties of $Sr_5 MgLa_y (BO_3)_6 : x Bi^{3+}$, $0.2Eu^{3+}$. (a) Emission spectra;

图 8 Sr₅ MgLa_{1.68} (BO₃)₆:0.12Bi³⁺,0.2Eu³⁺在不同波长激发下的测试结果。(a)发射光谱;(b) CIE 色坐标图 Fig. 8 Test results of Sr₅ MgLa_{1.68} (BO₃)₆:0.12Bi³⁺, 0.2Eu³⁺ excited at different wavelengths. (a) Emission spectra; (b) CIE chromaticity diagram

Fig. 9 Fluorescence attenuation and energy transfer efficiency. (a) Fluorescence attenuation curves of Bi^{3+} in $Sr_5MgLa_{1.88-y}$ (BO₃)₆:0.12Bi³⁺, yEu^{3+} ; (b) energy transfer efficiency from Bi^{3+} to Eu^{3+} by changing doping concentration of Eu^{3+}

荧光衰减曲线,图中 I 表示发光强度。所有的衰减 曲线均符合一阶指数函数 $I_t = I_0 \exp(-t/\tau)$,其中: $I_t 和 I_0 分别是在时间 t 和 t_0 时的发光强度; \tau 表示$ 对应样品的衰减时间,可以通过衰减曲线拟合计算 出来。从图 9 可以看出,当 Eu^{3+} 的掺杂浓度 y 分别 为 0、0.04、0.08、0.16、0.24 时,对应 Bi^{3+} 的发射衰减 时间 τ 分别为 8.895,8.544,8.469,8.279,7.855 μ s。 Bi^{3+} 的荧光寿命随着掺杂 Eu^{3+} 浓度的增大而逐渐 减小,其荧光衰减速度逐渐加快,表明其非辐射能量 传递速度增大。当 Bi³⁺掺杂浓度不变时,改变 Eu³⁺ 的掺杂浓度,能量会以非辐射的形式从 Bi³⁺传递给 Eu³⁺,对应的能量传递效率 η_T的表达式为

$$\eta_{\mathrm{T}} = 1 - \frac{\tau_{\mathrm{s}}}{\tau_{\mathrm{0}}}, \qquad (1)$$

式中: τ_s 和 τ_o 分别为在激活中心离子 Eu³⁺存在、不存在的条件下,敏化离子 Bi³⁺的内在衰减时间。从 Bi³⁺到 Eu³⁺的能量传递效率如图 9(b)所示,在所示的掺杂浓度范围内,能量传递效率随着 Eu³⁺掺杂浓度的增加而逐渐增大,并在 y = 0.24 时达到最大值 11%。

激活离子荧光强度的增强有两种途径,一是提 高激活离子的内量子效率(发射光子与吸收光子之 比),二是增强基态能级到激发态能级的吸收。不同 样品中 Eu³⁺的内量子效率基本不变,所以只能通过 吸收增强来提高荧光强度。图 10 所示为所制备样 \exists Sr₅MgLa_{2−r−y}(BO₃)₆:xBi³⁺, yM (0≤x, y≤ 1)的紫外-可见吸收谱。从图 10(a)可以看出, Sr₅MgLa₂(BO₃)₆在 250~400 nm 范围内的吸收非 常微弱,而掺杂 Bi3+可以使样品在 250~400 nm 范 围内有强吸收峰且吸收边线蓝移,该强吸收峰归属 于 Bi³⁺的 6s→6p 跃迁吸收。图 10(b)显示,掺杂 Eu³⁺可以使样品 Sr₅ MgLa_{1.64} (BO₃)₆: 0.12Bi³⁺, 0.24Eu³⁺在 394 nm 附近有一个小的吸收峰,该吸 收峰归属于 Eu³⁺的 f→f 跃迁吸收。与单掺杂 Bi³⁺ 相比,Eu³⁺和Bi³⁺共掺杂样品在200~400 nm范围 的吸收稍有降低。由图 10 (c) 可以看出, $Sr_5MgLa_{1,76}(BO_3)_6: 0.24Bi^{3+} = Sr_5MgLa_{1,36}(BO_3)_6:$ 0.24Bi³⁺,0.40Y³⁺的紫外-可见吸收光谱基本相同, 但掺杂 Y³⁺ 使样品的吸收边线出现红移, 与对应的 激发光谱相一致。

4 结 论

本文利用高温固相法合成了三方晶系结构的 Sr₅MgLa_{2-x-y}(BO₃)₆:xBi³⁺, yM系列荧光粉,掺 杂离子对样品颗粒的大小和形貌无影响。在 339 nm光激发下,Sr₅MgLa_{2-x}(BO₃)₆:xBi³⁺的光 谱中存在因Bi³⁺的³P₁→¹S₀跃迁而产生的蓝光区域 的发射宽峰(409~494 nm)。掺杂Y³⁺后, Sr₅MgLa_{1.76-y}(BO₃)₆:0.24Bi³⁺, yY³⁺荧光粉的蓝 光发射增强。在紫外光激发下, Sr₅MgLa_{2-x-y}(BO₃)₆:xBi³⁺, yEu³⁺可以产生Bi³⁺ 的蓝光发射和Eu³⁺的红光发射,Bi³⁺对Eu³⁺通过

图 10 紫外-可见漫反射光谱:(a) Sr₅ MgLa₂(BO₃)₆ 单掺 Bi³⁺及共掺 Bi³⁺和 Y³⁺;(b) Sr₅ MgLa₂(BO₃)₆ 单 掺 Bi³⁺及共掺 Bi³⁺和 Eu³⁺;(c) Sr₅ MgLa₂(BO₃)₆ 基质及单参 Bi³⁺

能量传递起到敏化作用。通过调节 Bi^{3+} 和 Eu^{3+} 的 掺杂比,或者改变激发波长, $Sr_5MgLa_{2-x-y}(BO_3)_6$: xBi^{3+} , yEu^{3+} 荧光粉可呈现出从蓝光到红光的发 光变化,表明该荧光粉可实现发光调控,可作为适用 于白光 LED 用的新型荧光粉。

参考文献

- [1] Liu Y F, Liu P, Wang L, *et al*. A two-step solidstate reaction to synthesize the yellow persistent $Gd_3 Al_2 Ga_3 O_{12}: Ce^{3+}$ phosphor with an enhanced optical performance for AC-LEDs [J]. Chemical Communications, 2017, 53(77): 10636-10639.
- [2] Liu Y F, Silver J, Xie R J, et al. An excellent cyanemitting orthosilicate phosphor for NUV-pumped white LED application [J]. Journal of Materials Chemistry C, 2017, 5(47): 12365-12377.
- Liu Y F, Zhang X, Hao Z D, *et al*. Crystal structure and luminescence properties of (Ca_{2.94-x} Lu_xCe_{0.06}) (ScMg) Si₃O₁₂ phosphors for white LEDs [J]. Chinese Journal of Luminescence, 2011, 32(5): 445-450.

刘永福,张霞,郝振东,等.荧光粉(Ca_{2.94-x} Lu_x Ce_{0.06})(ScMg)Si₃O₁₂的晶体结构和荧光性质[J].发 光学报,2011,32(5):445-450.

[4] Chi F F, Wei X T, Zhou S S, *et al*. Enhanced ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ transition and optical thermometry of garnet type

 $Ca_3 Ga_2 Ge_3 O_{12}$: Eu^{3+} phosphors [J]. Inorganic Chemistry Frontiers, 2018, 5(6): 1288-1293.

- [5] Shahi P K, Singh P, Rai S B, et al. Host-sensitized NIR quantum cutting emission in Nd³⁺ doped GdNbO₄ phosphors and effect of Bi³⁺ ion codoping
 [J]. Inorganic Chemistry, 2016, 55(4): 1535-1541.
- [6] Maggay I V B, Lin P C, Liu W R. Enhanced luminescence intensity of novel red-emitting phosphor
 -Sr₃ Lu₂ (BO₃)₄: Bi³⁺, Eu³⁺ via energy transfer[J]. Journal of Solid State Lighting, 2014, 1: 13.
- [7] Xiang Z F, Yang X L, Zhou B Y, et al. Enhancement of red emission in Ba₂ Mg(BO₃)₂: Eu²⁺, Mn²⁺ phosphor under 365 nm excitation[J]. Physica B: Condensed Matter, 2013, 431: 132-136.
- [8] Chen D J, Tang L, Lin L T, et al. Synthesis and luminescence of CaSb₂O₆:Bi³⁺, Eu³⁺ phosphors[J]. Chinese Journal of Inorganic Chemistry, 2015, 31 (12): 2279-2284.
 陈东菊,汤利,林利添,等. CaSb₂O₆:Bi³⁺, Eu³⁺荧 光粉的制备和发光性质[J]. 无机化学学报, 2015, 31(12): 2279-2284.
- [9] Kang F W, Hu Y H, Wu H Y, et al. Luminescence investigation of Eu³⁺-Bi³⁺ co-doped CaMoO₄ phosphor[J]. Journal of Rare Earths, 2011, 29(9): 837-842.
- $\label{eq:constraint} \begin{array}{ll} \mbox{[10]} & \mbox{Zhou H P, Jiang M S, Jin Y. A novel blue-emitting} \\ & \mbox{phosphor } Gd_{4.67}\,Si_3\,O_{13}:Bi^{3+}\mbox{ for near-UV LEDs[J]}. \\ & \mbox{RSC Advances, 2014, 4(86): 45786-45790}. \end{array}$
- [11] Luitel H N, Watari T, Chand R, *et al*. Photoluminescence properties of a novel orange red emitting $Sr_4 Al_{14} O_{25}$: Sm^{3+} phosphor and PL enhancement by Bi^{3+} co-doping [J]. Optical Materials, 2012, 34(8): 1375-1380.
- [12] Wang L S, Liu X M, Quan Z W, et al. Luminescence properties of Y_{0.9-x} Gd_x Eu_{0.1} Al₃ (BO₃)₄ (0≤x≤0.9) phosphors prepared by spray pyrolysis process [J]. Journal of Luminescence, 2007, 122/123: 36-39.
- Long J Q, Wang Y Z, Ma R, et al. Enhanced luminescence performances of tunable Lu_{3-x} Y_x Al₅ O₁₂: Mn⁴⁺ red phosphor by ions of Rn⁺ (Li⁺, Na⁺, Ca²⁺, Mg²⁺, Sr²⁺, Sc³⁺)[J]. Inorganic Chemistry, 2017, 56(6): 3269-3275.
- [14] Zhu H L, Zuo D T. Highly enhanced

photoluminescence from $YVO_4 : Eu^{3+} @ YPO_4$ core/ shell heteronanostructures [J]. The Journal of Physical Chemistry C, 2009, 113(24): 10402-10406.

- [15] Huang J L, Zhou L Y, Liang Z P, et al. Promising red phosphors LaNbO₄: Eu³⁺, Bi³⁺ for LED solidstate lighting application[J]. Journal of Rare Earths, 2010, 28(3): 356-360.
- [16] Huang A J, Yang Z W, Yu C Y, et al. Tunable and white light emission of a single-phased Ba₂ Y(BO₃)₂ Cl: Bi³⁺, Eu³⁺ phosphor by energy transfer for ultraviolet converted white LEDs[J]. The Journal of Physical Chemistry C, 2017, 121(9): 5267-5276.
- [17] Iso Y, Takeshita S, Isobe T. Effects of annealing on the photoluminescence properties of citrate-capped YVO₄:Bi³⁺, Eu³⁺ nanophosphor[J]. The Journal of Physical Chemistry C, 2014, 118(20): 11006-11013.
- [18] Schaffers K I, Thompson P D, Alekel T, et al. STACK crystal chemistry [J]. Chemistry of Materials, 1994, 6(11): 2014-2022.
- [19] Sankar R, Rao G V S. Luminescence studies on doped borates, A₆ MM'(BO₃)₆ [J]. Journal of Alloys and Compounds, 1998, 281(2): 126-136.
- [21] Müller M, Fischer S, Jüstel T. Luminescence and energy transfer of co-doped $Sr_5 MgLa_2 (BO_3)_6 : Ce^{3+}$, Mn^{2+} [J]. RSC Advances, 2015, 5(83): 67979-67987.
- [22] Chen C H, Chen K, Meng L L, et al. Luminescence properties and Ce³⁺ → Tb³⁺ energy transfer in CaYAlO₄: Ce³⁺, Tb³⁺ phosphors [J]. Acta Optica Sinica, 2018, 38(1): 0116002.
 陈彩花,陈凯,蒙丽丽,等. CaYAlO₄: Ce³⁺, Tb³⁺ 荧光粉的发光性能及 Ce³⁺ → Tb³⁺ 的能量传递[J]. 光学学报, 2018, 38(1): 0116002.
- [23] Chen K, Wang X J, Yang G H, et al. Luminescent properties of Ca₂GdZr₂Al₃O₁₂:Mn⁴⁺ and Bi³⁺ codoped phosphors[J]. Acta Optica Sinica, 2019, 39 (2): 0216001.
 陈凯, 王小军,杨国辉,等. Ca₂GdZr₂Al₃O₁₂:Mn⁴⁺ 及 Bi³⁺共掺杂荧光粉的发光性能研究[J].光学学报, 2019, 39(2): 0216001.